
Introductory Chemistry Chem 103

Chapter 9 – Covalent Bonding and Molecules

Lecture Slides

Covalent Molecules

Covalent bonds:

Two atoms share electrons

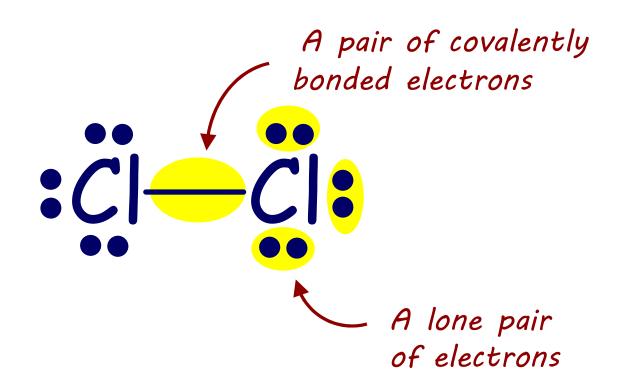
Occur between nonmetal atoms

Octet rule:

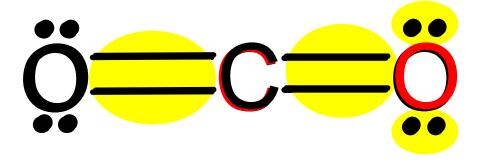
Atoms are stabilized by having 8 electrons in the valence shell

Lewis structures:

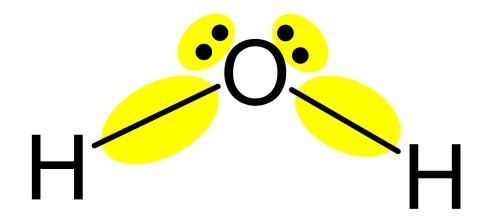
Show the arrangement of covalently bonded atoms

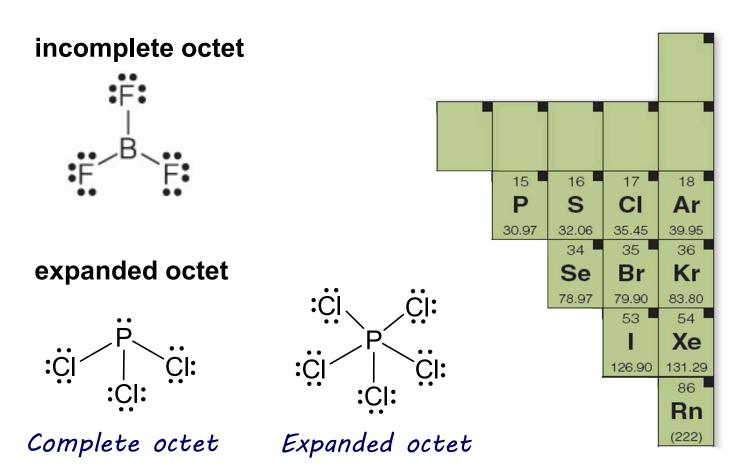

Use a dash to represent two shared electrons

Covalent Double and Triple Bonds

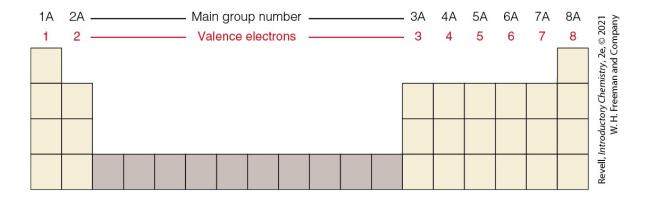

Covalent double bonds:

Covalent triple bonds:


Pairs of Electrons in Compounds


In Most Molecules, Atoms Follow the Octet Rule

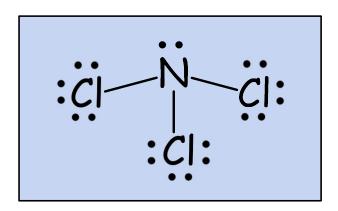
In Most Molecules, Atoms Follow the Octet Rule, Continued



Exceptions to the Octet Rule

Drawing Lewis Structures

- 1. Add up all the valence electrons.
- 2. Frame the structure.
- 3. Fill octets on outer atoms first.
- 4. Fill the octet on the central atom.
 - any remaining electrons on central atom
 - use double/triple bonds if needed

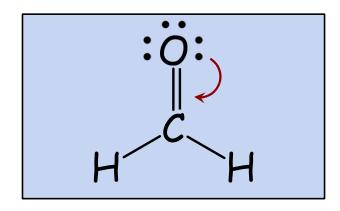


Drawing Lewis Structures Practice

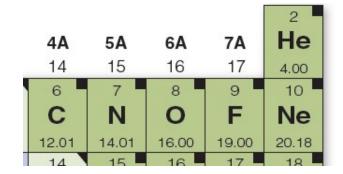
Draw a Lewis structure for nitrogen trichloride, NCI₃.

= 26 valence electrons

- 1. Sum electrons.
- 2. Draw framework.
- 3. Fill octets on outer atoms.
- 4. Fill octet on central atom.


	5A 15	6A 16	7A 17	2 He
i	7	8 (9	10
	N	O	F	Ne 20.18
	15	16	17	18
	Р	S	CI	Ar
100	30.97	32.06	35.45	39.95
	20	0.4	25	00

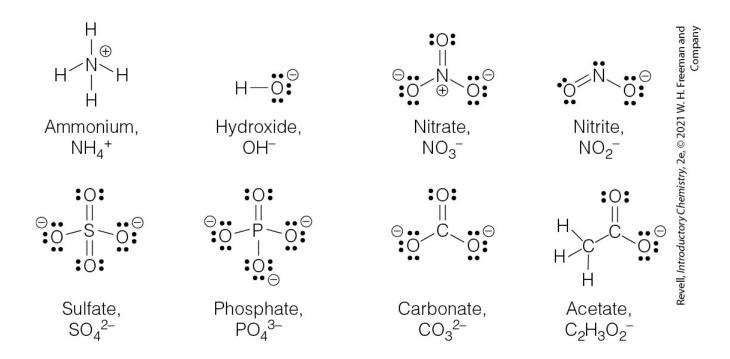
Drawing Lewis Structures, More Practice


Formaldehyde, CH₂O, is commonly used to manufacture plastics. Draw the Lewis structure for a formaldehyde molecule.

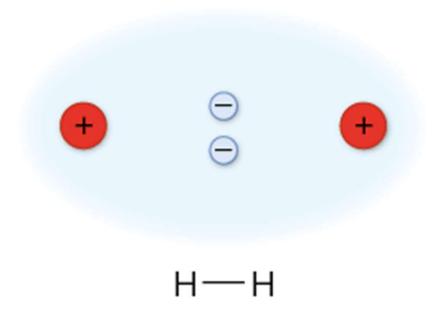
$$CH_2O$$

4 + 1(2) + 6

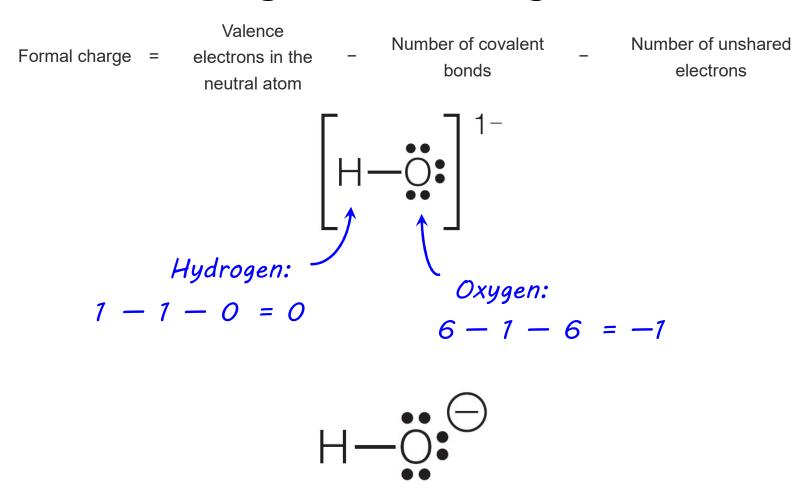
= 12 valence electrons



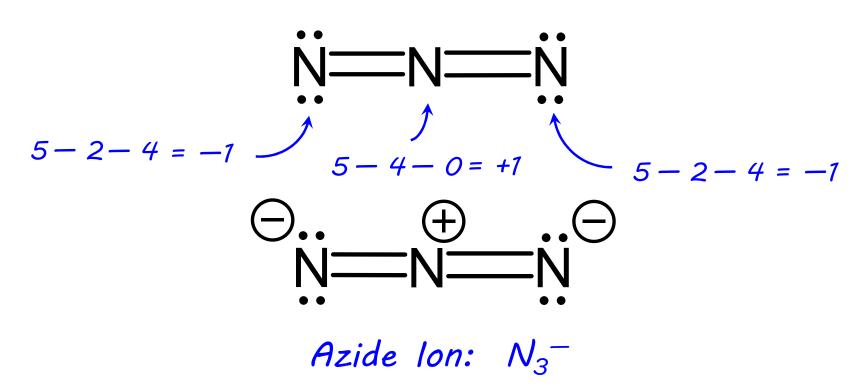
- 1. Sum electrons.
- 2. Draw framework.
- 3. Fill octets on outer atoms.
- 4. Fill octet on central atom.



Molecules and Charge


polyatomic ions groups of atoms with an overall chargeformal charges a method of identifying charged sites

One Electron From Each Bond is Assigned to an Atom


Calculating Formal Charge Practice

Oxygen and Nitrogen Atoms Often Have Formal Charges

Calculating Formal Charge, More Practice

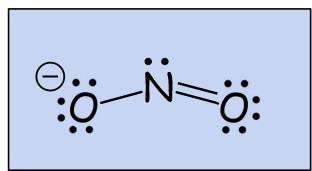
Automotive air bags contain sodium azide, NaN_3 . The Lewis structure for the azide ion (without charges) is shown. Calculate the formal charge on each atom in this structure. What is the overall charge of the azide ion?

Drawing Lewis Structures for Polyatomic Ions

- Similar to neutral molecules
- Consider charge when finding the number of valence electrons

How many valence electrons are in a hydroxide ion?

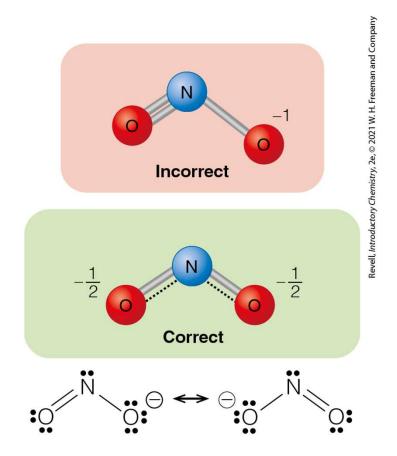
$$6 + 1 + 1 = 8$$
 valence electrons


Lewis Structures for Polyatomic Ions Practice

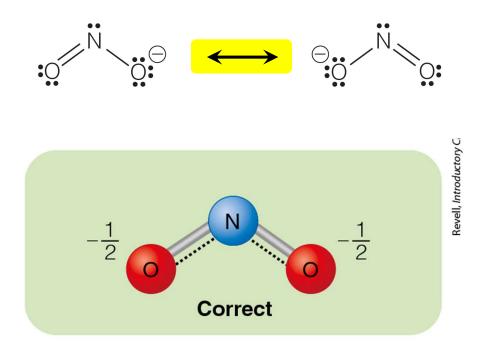
Draw a Lewis structure for the nitrite ion, NO₂-. Show all nonzero formal charges.

$$NO_2^{-}$$
 $5 + 6(2) + 1$

= 18 valence electrons


- 1. Sum electrons.
- Draw framework.
- 3. Fill octets on outer atoms.
- 4. Fill octet on central atom.

Identifying the Best Lewis Structure


What is the best structure for phosgene, COCl₂?

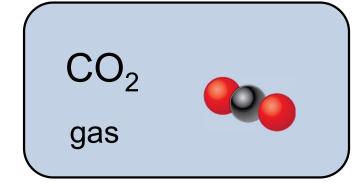
Resonance Structures

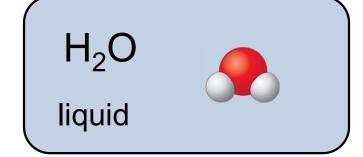
Resonance Structures, Continued

- a set of structures that show how electrons are distributed.
- used when a single Lewis structure is insufficient.

Ions With Resonance Structures Spread Charges Over Multiple Atoms

NO ₃	SO ₄ ²⁻
NO ₂ -	CO ₃ ²⁻
PO ₄ ³⁻	C ₂ H ₃ O ₂ ⁻

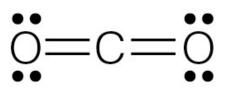

Only 2nd bonds and lone pairs change in resonance structures.

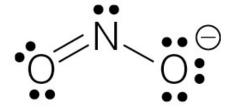

Using Resonance Structures to Calculate Formal Charge

The nitrate ion (NO₃-) has three major resonance structures. Draw each structure. Based on these structures, what is the average charge on each oxygen atom?

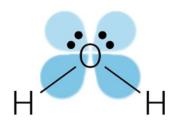
charge on each oxygen: $-\frac{2}{3}$

Shapes of Molecules

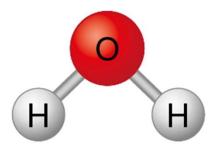



Brilliant Eye/Shutterstock

Predicting Molecular Shapes

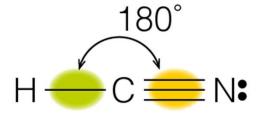

Valence Shell Electron Pair Repulsion

VSEPR



Predicting Molecular Shapes, Continued

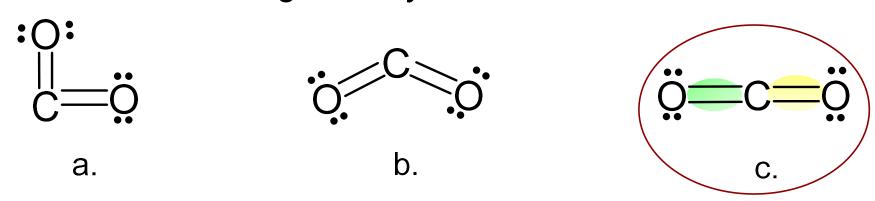
Electronic geometry


Arrangement of electrons around the central atom

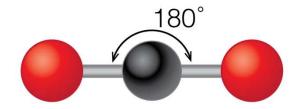
Molecular geometry

Shape caused by the arrangement of atoms

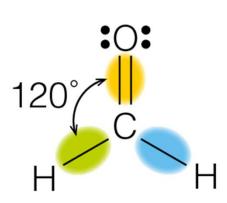
Two Electron Sets: Linear

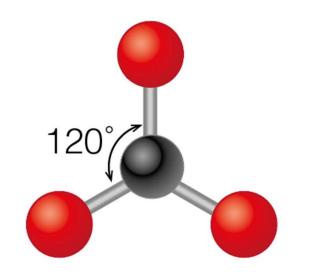

180°

Electronic geometry Linear Molecular geometry Linear Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

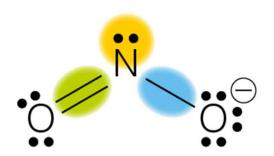

double and triple bonds count as 1 "set"

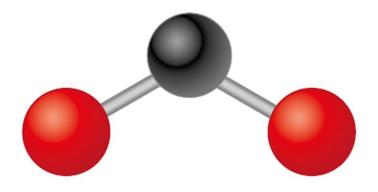
Geometric Stability


Which geometry is most stable?


2 sets of electrons: Linear

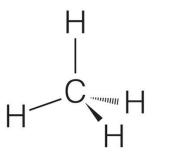
Three Electron Sets: Trigonal Planar


Electronic geometry
Trigonal planar

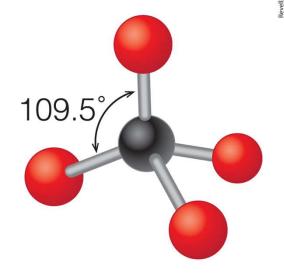

Molecular geometry
Trigonal planar

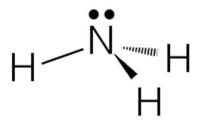
Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and

Three Electron Sets: Trigonal Planar, Continued

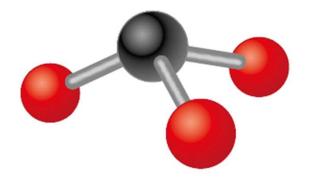

Electronic geometry
Trigonal planar

Molecular geometry
Bent

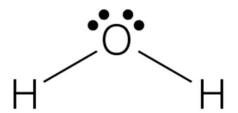

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company


Electronic geometry

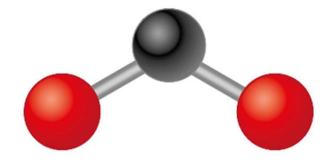
Tetrahedral


Molecular geometry

Tetrahedral


Electronic geometry

Tetrahedral

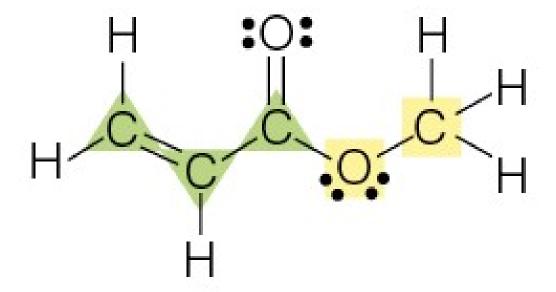

Molecular geometry

Trigonal pyramidal

Electronic geometry

Tetrahedral

Molecular geometry

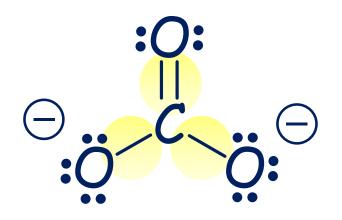

Bent

Revell, *Introductory Chemistry*, 2e, © 2021 W. H. Freeman and Company

Electronic and Molecular Geometry

Electron sets	Electronic geometry	Model	Bonding sets	Lone pairs	Molecular geometry	Examples
2	Linear	Accessory to the property of t	A KY Parameter N KY P	0	Linear	ö =c= ö
3	Trigonal Planar		3 Action 2020 W. H. Freeman and Company	0	Trigonal Planar	:O:
			2	1	Bent	n n •⊙ N • O •
			4	0	Tetrahedral	H
4	Tetrahedral		Recollinated to sychemize and Co	1	Trigonal pyramidal	H H
			2	2	Bent	H H

Electronic and Molecular Geometry Practice

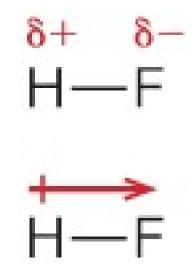


Trigonal planar

Tetrahedral

Electronic and Molecular Geometry, More Practice

Lithium carbonate is a simple ionic compound that is widely used to treat bipolar disorder. What is the molecular geometry of the carbonate ion?



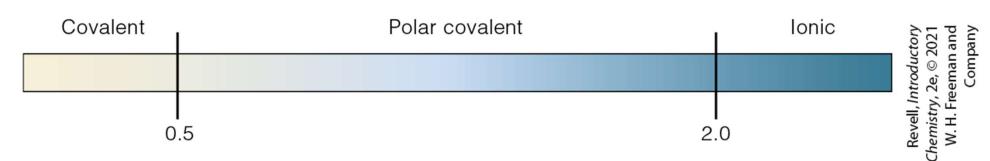
Electronic geometry: Trigonal planar

Molecular geometry: Trigonal planar

Polar Bonds and Molecules

Polar covalent bond atoms do not share the electrons evenly

Electronegativity


how strongly atoms pull bonded electrons

H 2.1

Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg								AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0				
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.7	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	
R 0.8	Sr 1.0	Y 1.2	Zr	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.2	l 2.5	
Cs 0.7	Ba	La	Hf 1.3	Ta	W	Re	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg	TI 1.8	Pb	Bi	Po 2.0	At 2.2	
3.1	5.0			0	,					,					0		

Comparing Covalent, Polar Covalent and Ionic Bonds

F-F H-F $Na^+:F^-$

Difference in atom electronegativity

Covalent: < 0.5

Polar Covalent: 0.5 – 2.0

Ionic: > 2.0

H 2.1																	
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg											AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V	Cr 1.6	Mn 1.5	Fe	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.7	Ga	Ge 1.8	As 2.0	Se 2.4	Br 2.8	
R 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.2	I 2.5	
Cs	Ba	La	Hf 1.3	Ta	W	Re 1.9	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	Hg	TI 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	
Fr	Ra 0.9																

An Analogy for Polar Covalent Bonds

H-F

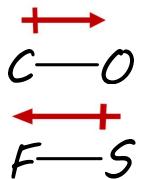
Classifying Bonds Practice

Which bond is more polar, a C-O bond or an F-S bond? Show the direction of polarity for both bonds.

C: 2.5

F: 4.0

O: 3.5


5: 2.5

Difference = 1.0 Difference = 1.5

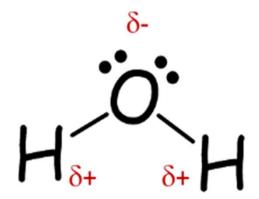
Polar Covalent

Polar Covalent

F-5	is	more	pal	lar
	13	111016	PUI	ИI

CI

3.0

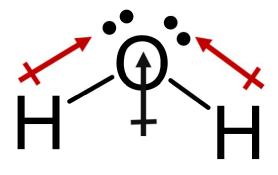

2.0

AI

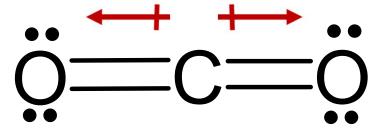
Molecules with dipoles

Molecular dipole an overall polarity in a molecule

net dipole dipole

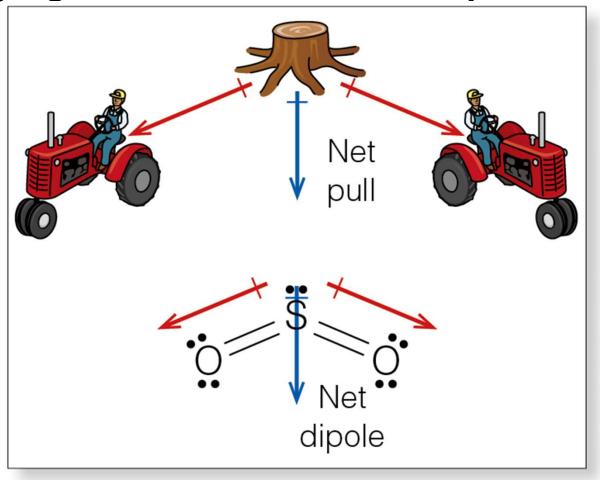


polar covalent bonds shape



Rich Carey/Shutterstock

Identifying Molecules with a Net Dipole



Net Dipole

No Net Dipole

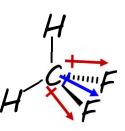
Identifying Molecules with a Net Dipole, Continued

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

Identifying Molecules with a Net Dipole Practice

Which of these have a net dipole?

CH₄


Non-polar bonds

No dipole

BCI₃

CIXX CI

Polar bonds No net dipole CH₂F₂

Polar bonds

Net dipole

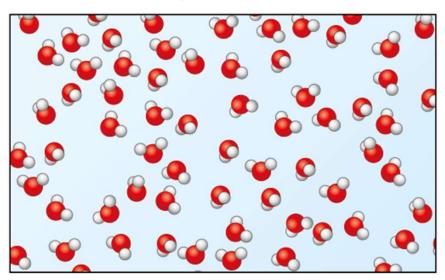
B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	

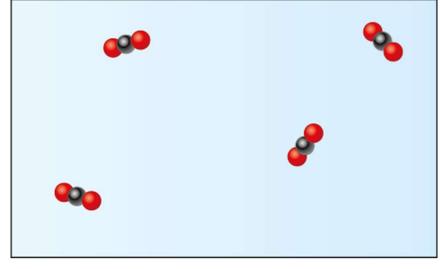
How Dipoles Affect Properties – A Preview

CO₂ Linear

No net dipole

H₂O Bent

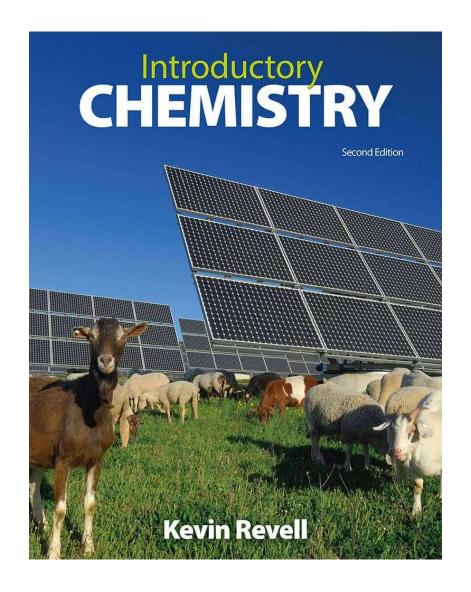

Net dipole


Brilliant Eye/Shutterstock

How Dipoles Affect Properties – A Preview, Continued

H₂O Net dipole Liquid at 25 °C

CO₂ No net dipole Gas at 25 °C

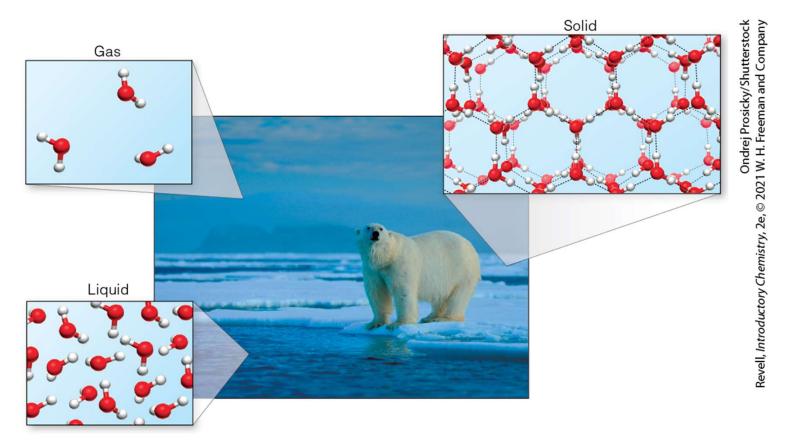


Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

Introductory Chemistry Chem 103

Chapter 10 – Solids, Liquids, Gases

Lecture Slides



Interactions between Particles

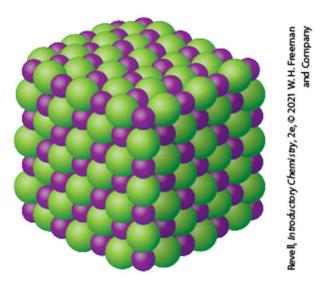
	Atomic/Molecular Arrangement	Macroscopic Properties
Solid	Particles are close together and held in a fixed place.	Definite shape and volume
Liquid	Particles are close together but move freely past each other.	Definite volume; Adopts the shape of the container.
Gas	Particles are far apart and have very little interaction.	Adopts shape and volume of container

Phase change

A transition from one state of matter to another.

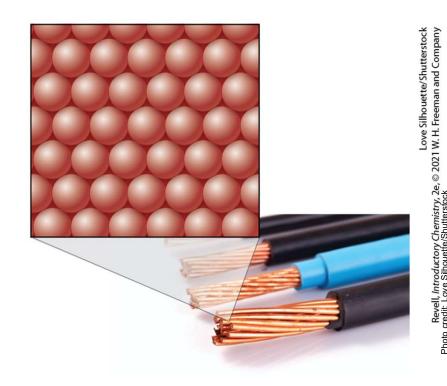
The Forces Between Particles Influence Physical Properties

Stronger forces between particles - higher melting and boiling points.



Solids and Liquids

Ionic Substances

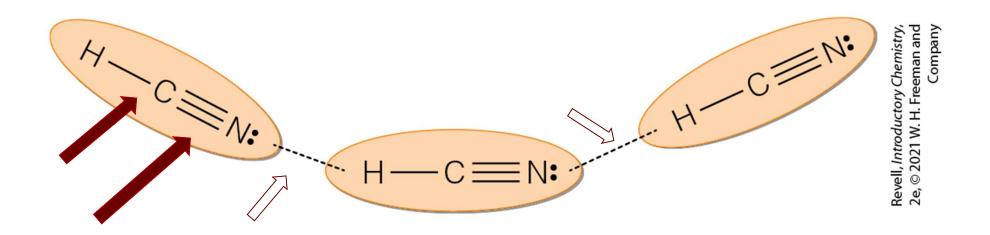

Lattices: rigid frameworks of atoms, molecules or ions.

Compound	Melting Point (°C)
NaCl	801
KCI	770
MgCl ₂	714
CaO	2,572
Al_2O_3	2,072

Metallic Substances

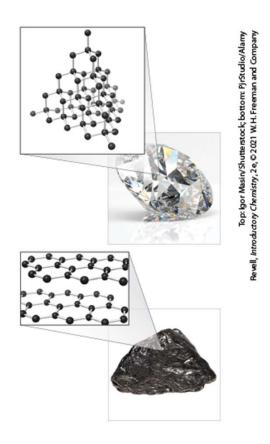
- Form lattices of tightly packed atoms.
- Electrons move easily between atoms.
- Shapes of metals are easily altered.
 - Malleable
 - Ductile

Metallic Substances, Continued



Element	Melting Point (°C)
Lead	327
Aluminum	660
Gold	1,064
Copper	1,085
Iron	1,538

Molecular Substances


Forces within molecules: covalent bonds

Forces <u>between</u> molecules: <u>intermolecular forces</u>

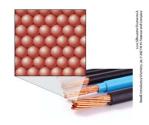
Covalent Networks and Polymers

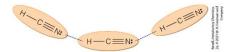
covalent networks: lattices of covalent bonds that form giant molecules



Covalent Networks and Polymers, Continued

polymers: contain long chains of covalently-bonded atoms

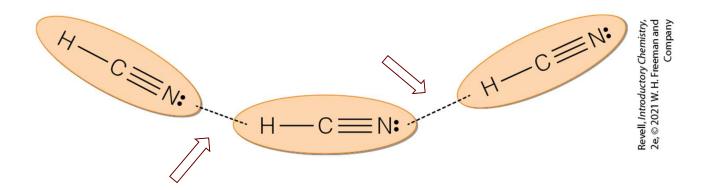



Solids and Liquids Summary

Ionic Substances

Metallic Substances

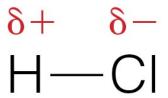
Molecular Substances


Covalent Networks and Polymers

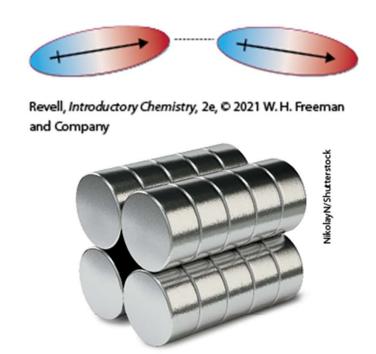
Forces Within and Between Molecules

Forces within molecules: covalent bonds

Forces <u>between</u> molecules: <u>intermolecular forces</u>

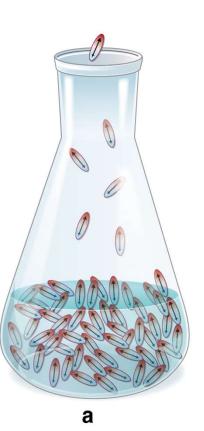

Forces Between Molecules

intermolecular forces


- 1. Dipole-dipole Interactions
- 2. Hydrogen bonds
- 3. Dispersion forces

Dipole-Dipole Interactions, Part 1

Attractions between polar covalent molecules:



Dipole-Dipole Interactions, Part 2

Dipole

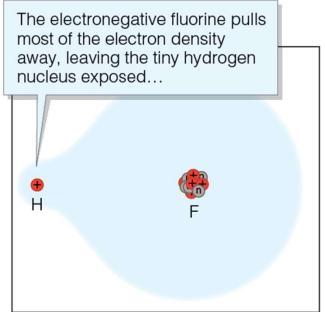
Higher Melting Point

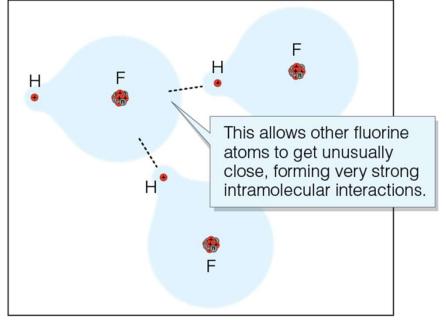
Higher Boiling Point

No dipole

Dipole-Dipole Interactions, Part 3

	C = C = 0	•0. S	$H \longrightarrow C - C = N$
	dioxide	Sulfur dioxide	Acetonitrile
Geometry	Linear	Bent	Linear
Dipole	Zero	Small	Large
Boiling Point			

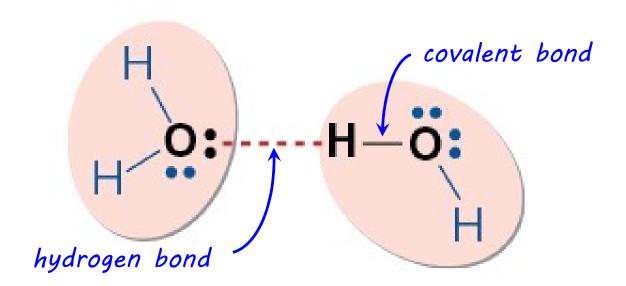

Hydrogen Bonding, Part 1

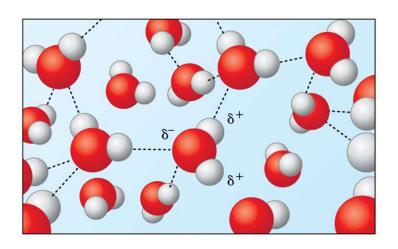

	H C	H-C≡N:	H •0•
	'' H Methane	Hydrogen cyanide	Water
Formula mass	16.0 u	27.0 u	18.0 u
Dipole strength*	0	2.98	1.85
Boiling point			

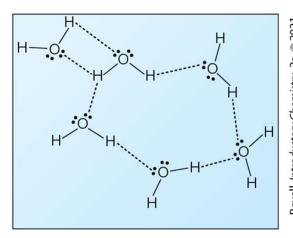
^{*}These numbers convey the relative size of each dipole.

Hydrogen Bonding, Part 2

A strong intermolecular force between molecules containing H-F, H-O, or H-N bonds.

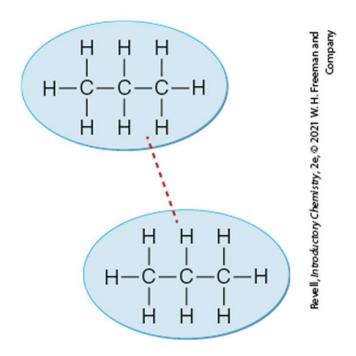



Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

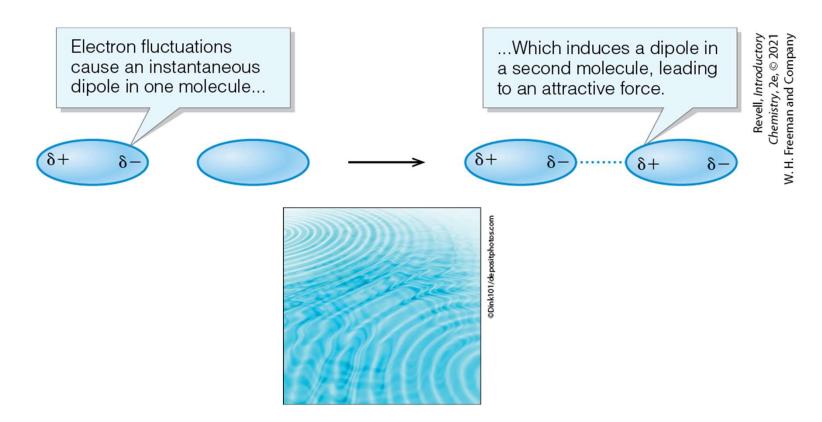

Hydrogen Bonding, Part 3

A strong intermolecular force between molecules containing H-F, H-O, or H-N bonds.

Hydrogen Bonds Explain the Properties of Water



<u>-</u>

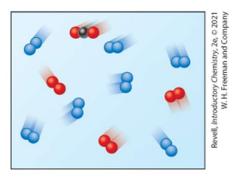

London Dispersion Forces, Part 1

Weak intermolecular forces that result from instantaneous dipoles

London Dispersion Forces, Part 2

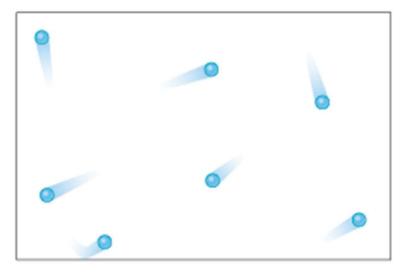
Weak intermolecular forces that result from instantaneous dipoles

Summary of Intermolecular Forces


Left: chairoij/ Shutterstock; center: Denis Kapexhiu/ Shutterstock; right: Manuel Ploetz/ Shutterstock

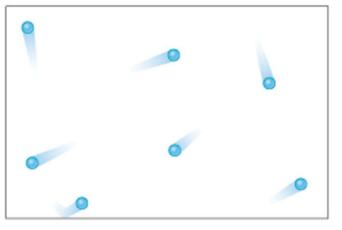
Type	Description	Strength
Hydrogen bonding	molecules with H-F, H-O, or H-N bonds	strongest
Dipole-dipole forces	molecules with net dipole	
London dispersion forces	all covalent molecules	weakest

Describing Gases


particles are spaced far apart very little interaction between particles

Ideal Gas

- 1. Volume of particles is much less than container.
- 2. Particles have no attraction for each other.


Revell, Introductory Chemistry, 2e, 2021 W.H. Freeman and Company

Temperature
Volume
Pressure

Pressure

The force that gases exert on their surroundings.

Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company

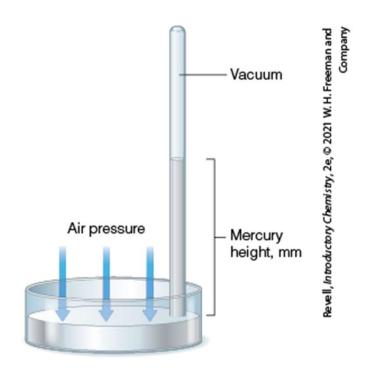
Cathyrose Melloan/Alamy

Measuring Pressure

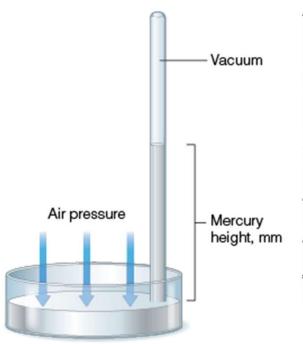
Measuring Pressure – Barometers

Barometer: a device used to measure atmospheric pressure

Millimeters of mercury (mm Hg)


1 mm Hg = 1 torr

Average air pressure at sea level:


760 mm Hg

760 torr

Standard pressure

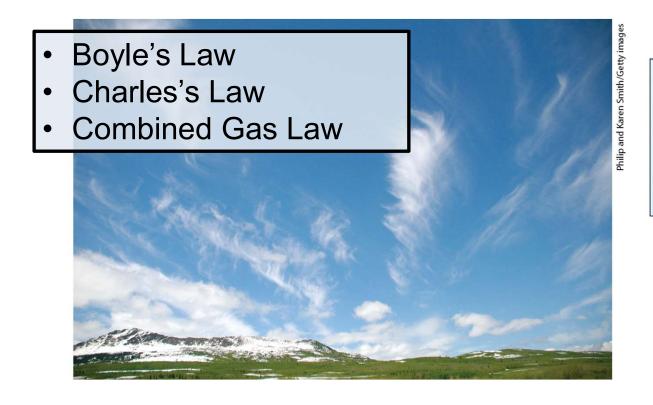
Measuring Pressure – Barometers Continued

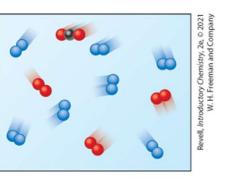
Measuring Pressure – Gauge Pressure

Gauge Pressure: The difference between the compressed gas

pressure and the atmospheric pressure.

Measuring Pressure – Conversion Factors


1 atmosphere (atm) = 760 mm Hg (torr)


1 atm = 14.70 pounds per square inch (psi)

1 atm = 101.3 kilopascals (kPa)

1 atm = 1.013 bar

The Gas Laws, Part 1

Boyle's Law

The pressure and volume of a gas are inversely related.

$$PV = constant$$

$$P_1V_1 = P_2V_2$$

Boyle's Law Practice

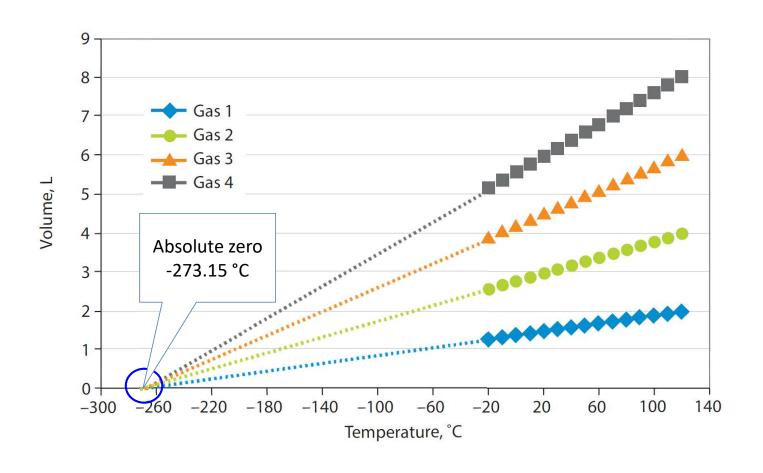
A commercial compressor stores 2.8 liters of air at a pressure of 150 psi. If this air is allowed to expand until the pressure is equal to 15 psi (just over atmospheric pressure), what volume will the air occupy?

$$P_{1} = 150 \text{ psi}$$
 $V_{1} = 2.8 \text{ L}$
 $P_{2} = 15 \text{ psi}$
 $V_{2} = ?$

$$P_{1}V_{1} = P_{2}V_{2}$$

$$V_{2} = \frac{P_{1}V_{1}}{P_{2}}$$

$$= \frac{(150 \text{ psi})(2.8 \text{ L})}{(15 \text{ psi})} = 28 \text{ L}$$


Charles's Law

At constant pressure, the volume of a gas is directly proportional to its temperature.

$$\frac{T}{V} \propto T$$

$$\frac{V}{T} = \text{constant}$$

Using Charles's Law to Find Absolute Zero

The Kelvin Scale

Absolute zero

-273.15 °C 0 K

$$kelvin = ^{\circ}C + 273.15$$

Working to the nearest degree:

$$kelvin = {}^{\circ}C + 273$$

Solving Problems with Charles's Law

$$\frac{V}{T}$$
 = constant

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Charles's Law Practice

A balloon has a volume of 3.2 liters at room temperature (25 °C). The gas inside the balloon is then heated to 100 °C. What is the new volume of the balloon?

$$V_1 = 3.2 L$$
 $V_2 = ?$
 $T_1 = 25 \% + 273 = 298 K$
 $T_2 = 100 \% + 273 = 373 K$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_2 = \frac{V_1 T_2}{T_1}$$

$$= \frac{(3.2 \text{ L})(373 \text{ K})}{(298 \text{ K})} = 4.0 \text{ L}$$

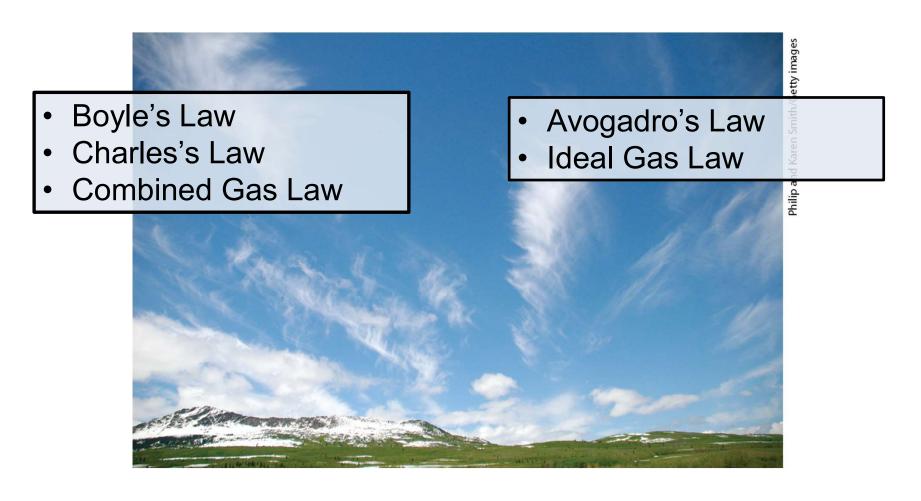
The Combined Gas Law

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

The Combined Gas Law Practice

A gas with a temperature of 280 K, a pressure of 200 kPa, and a volume of 25.8 L is compressed to 15.8 L, causing the pressure to increase to 350 kPa. What is the temperature of the gas under the new conditions?

$$P_1 = 200 \text{ kPa}$$
 $V_1 = 25.8 \text{ L}$
 $T_1 = 280 \text{ K}$
 $P_2 = 350 \text{ kPa}$
 $V_2 = 15.8 \text{ L}$
 $T_2 = ?$


$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$T_2 = \frac{P_2 V_2 T_1}{P_1 V_1}$$

$$= \frac{(350 - kPa)(15.8 + 1)(280 \text{ K})}{(200 - kPa)(25.8 + 1)}$$

$$= 300 \text{ K}$$

The Gas Laws, Part 2

Avogadro's Law

If temperature and pressure are constant, the volume of a gas is proportional to the number of moles of gas present.

 $V \propto n$

at Standard Temperature and Pressure (STP)...

$$T = 0 \, ^{\circ}\text{C} (273 \, \text{K})$$

 $P = 1.0 \, \text{atm}$

...1 mole of gas occupies 22.4 Liters

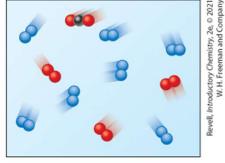
The Ideal Gas Law

$$PV = nRT$$

- $R = 0.0821 L \cdot atm/mol \cdot K$
- T must be in kelvins
- P, V units must match gas constant

The Ideal Gas Law Practice

What volume does 1.00 mole of gas occupy at a temperature of 0.00 °C and a pressure of 1.00 atmospheres?


$$PV = nRT$$
 $T = 0.00 \, ^{\circ}C$
 $V = \frac{nRT}{P}$ $= \frac{(1.00 \, mol)(0.0821 \, L \cdot atm/mol \cdot K)(273.15)}{1.00 \, atm}$

Mixtures of Gases: Partial Pressure

partial pressure: The pressure caused by one gas in a mixture.

Adding up all partial pressures gives the total pressure.

Air: 78% nitrogen 21% oxygen

Partial Pressure Practice

If a 40.0-L cylinder is filled with 5.00 moles of nitrogen, 2.00 moles of oxygen, and 3.00 moles of carbon dioxide at a temperature of 400 K, what is the pressure inside the cylinder?

de the cylinder?
$$P_{N2} = \frac{nRT}{V} = \frac{(5.00 \text{ mol})(0.0821 \text{ L·atm/mol·K})(400 \text{ K})}{40.0 \text{ L}} = 4.11 \text{ atm}$$

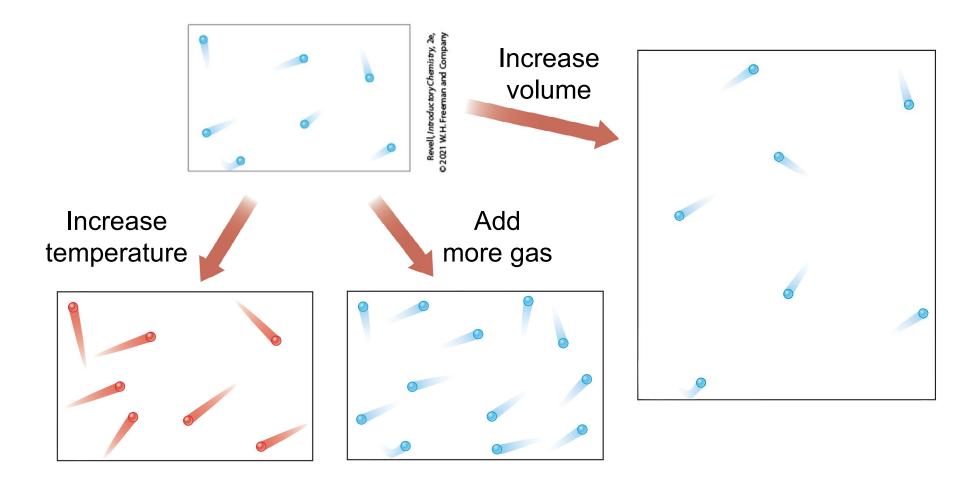
$$P_{O2} = \frac{nRT}{V} = \frac{(2.00 \text{ mol})(0.0821 \text{ L·atm/mol·K})(400 \text{ K})}{40.0 \text{ L}} = 1.64 \text{ atm}$$

$$P_{CO2} = \frac{nRT}{V} = \frac{(3.00 \text{ mol})(0.0821 \text{ L·atm/mol·K})(400 \text{ K})}{40.0 \text{ L}} = 2.46 \text{ atm}$$

$$P_{Total} = P_{N2} + P_{O2} + P_{CO2}$$

$$P_{Total} = P_{N2} + P_{O2} + P_{CO2}$$

= 4.11 atm + 1.64 atm + 2.46 atm = 8.21 atm


Partial Pressure, More Practice

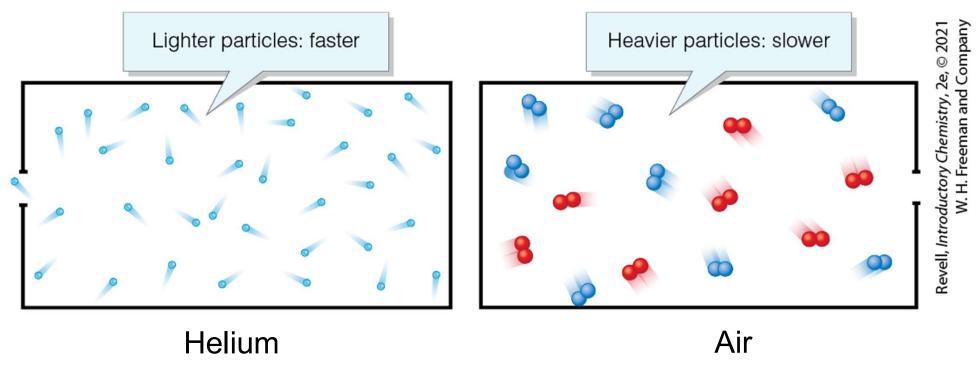
If a 40.0-L cylinder is filled with 5.00 moles of nitrogen, 2.00 moles of oxygen, and 3.00 moles of carbon dioxide at a temperature of 400 K, what is the pressure inside the cylinder?

$$n_{total} = 5.00 \text{ moles} + 2.00 \text{ moles} + 3.00 \text{ moles} = 10.00 \text{ moles} \text{ total}$$

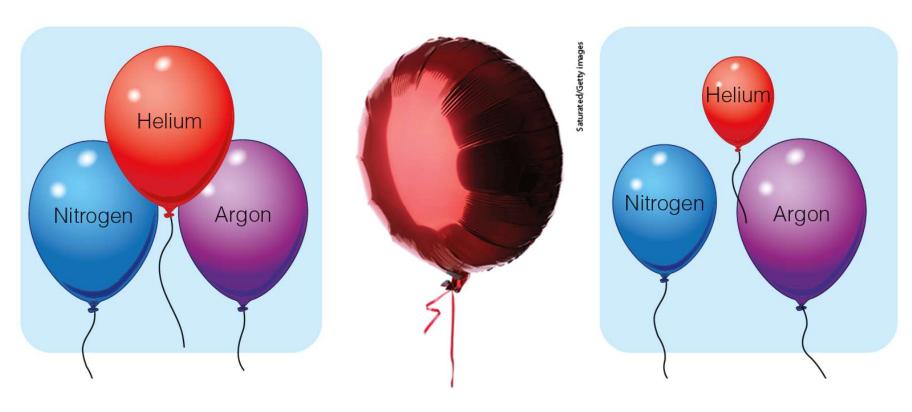
$$P_{total} = \frac{nRT}{V} = \frac{(10.00 \text{ mol})(0.0821 \text{ L·atm/mol·K})(400 \text{ K})}{40.0 \text{ L}} = 8.21 \text{ atm}$$

A Molecular View of the Gas Laws

Diffusion


The spread of particles through random motion.

Lighter particles diffuse more quickly.


Effusion

The process of a gas escaping from a container.

Particles leak out more quickly

Effusion, Continued

Gas Stoichiometry, Part 1

 $C_6H_{12}O_6(s) \rightarrow 2C_2H_6O(l) + 2CO_2(g)$

Scott Eisen/Bloomberg via Getty

Stoichiometry

Gas Laws

Gas Stoichiometry, Part 2

Gas Stoichiometry, Part 3

The mole map, including gases Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company P, V, T (gas A) (gas B) PV = nRTPV = nRTMole ratio Molar mass from equation Molar mass Moles A **Grams A** Moles B **Grams B** Avogadro's Avogadro's number number

Particles B

Particles A

Gas Stoichiometry Practice

In the fermentation of glucose, how many moles of carbon dioxide are produced for each kilogram of glucose that reacts? If the reaction takes place in a sealed container and the gas occupies a volume of 8.10 liters at a temperature of 21 °C, find the pressure of the carbon dioxide gas inside the container.

$$C_6H_{12}O_6$$
 (s) $\to 2 C_2H_6O$ (l) + 2 CO_2 (g)

 $g C_6 H_{12} O_6 \Rightarrow Moles C_6 H_{12} O_6 \Rightarrow Moles CO_2$

$$1,000 \ g \ \frac{C_6H_{12}O_6}{180.18 \ g \ C_6H_{12}O_6} \times \frac{1 \ mol \ C_6H_{12}O_6}{1 \ mol \ C_6H_{12}O_6} \times \frac{2 \ mol \ CO_2}{1 \ mol \ C_6H_{12}O_6} = 11.10 \ mol \ CO_2$$

Moles CO₂ ⇒ Pressure CO₂

$$P = \frac{nRT}{V} = \frac{(11.10 \text{ mot } CO_2)(0.0821 + \text{satm/mot K})(294 \text{ K})}{8.10 + } = 33.1 \text{ atm } CO_2$$

$$T = 21^{\circ}C + 273 = 294 \text{ K}$$

Gas Stoichiometry, More Practice

Natural gas burns cleanly in air, according to this equation:

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

If 13.1 liters of CH₄ burn at a pressure of 1.00 atmosphere and a temperature of 290 K, what mass of carbon dioxide gas is produced?

$$n = \frac{PV}{RT} = \frac{(1.00 \text{ atm})(13.1 + t)}{(0.0821 + t \cdot atm/mol \cdot K)(290 \text{ K})} = 0.550 \text{ moles } CH_4$$

Moles $CH_4 \Rightarrow Moles CO_2 \Rightarrow Grams CO_2$

$$0.550 \frac{\text{mol CH}_{4}}{\text{1 mol CH}_{4}} \times \frac{1 \frac{\text{mol CO}_{2}}{1 \text{ mol CH}_{4}}}{1 \frac{\text{mol CO}_{2}}{1 \frac{\text$$

Gas Stoichiometry Summary

The mole map, including gases P, V, T (gas A) (gas B) PV = nRTPV = nRTMole ratio Molar mass from equation Molar mass Moles A Grams A Moles B **Grams B** Avogadro's Avogadro's number number Particles A Particles B

Revell, Introductory Chemistry, 2e, © 2021 W. H. Freeman and Company